
The Synthesis of 5S-5-[³H₁]Mevalonic Acid Lactone

By A. I. Scott,* G. T. Phillips, P. B. Reichardt, and J. G. Sweeny

(Kline Chemistry Laboratory, Yale University, New Haven, Connecticut 06520)

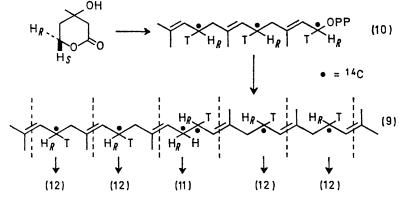
Summary The synthesis of $5S-5-[^{3}H_{1}]$ mevalonic acid lactone and the proof of its structure by enzymatic conversion into squalene are described.

As part of a study of the biosynthesis of various mevalonicderived alkaloids, we required a sample of $5S-5-[{}^{3}H_{1}]$ mevalonic acid lactone. Since this compound may be of into the methyl ester by heating with dimethyl sulphate.⁴ In a modification of a published procedure,⁵ the ester was condensed with acetone in the presence of sodium hydride to give the sodium salt of $1-[^{3}H]$ -3-oxobutyraldehyde. The crude salt was then treated with methanolic hydrogen chloride to afford $1-[^{3}H]$ -3-oxobutyraldehyde dimethylacetal (5). Condensation of acetal (5) with methyl iodoacetate and granular zinc under Reformatsky conditions⁶ produced

SCHEME 1

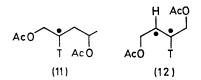
use to many researchers in the terpenoid field, and since the $5S-5-[^{3}H_{1}]$ -isomer is the only unknown asymmetrically labelled mevalonate,¹ we report details of its synthesis and proof of structure.²

The introduction of asymmetry to position 5 of mevalonic acid has been achieved by Donninger and Popják³ in the synthesis of 5R-5-[³H₁]mevalonic acid (1). Their procedure involved the enzymatic reduction of mevaldic acid (2) with 4R-4-[³H₁]-TPNH and rat liver mevaldate reductase. By preparing 5-[³H]mevaldic acid (3) and incubating it with the same enzyme and TPNH, the 5S-5-[³H₁]-isomer of mevalonic acid (4) should result.


5[³H]Mevaldic acid was synthesised as outlined in Scheme 1. Ten millicuries of sodium [³H]formate was converted methyl 5-[3H]-5,5-dimethoxy-3-hydroxy-3-methylvalerate (6). Hydrolysis of the ester with aqueous $Ba(OH)_2$ solution gave the barium salt of mevaldic acid dimethylacetal (7) in an overall radiochemical yield of $2 \cdot 5\%$. The corresponding 5-[¹⁴C]mevaldic acid dimethylacetal (8) was prepared by the same route starting with sodium [¹⁴C]-formate.

Hydrolysis of acetal (7) with dilute sulphuric acid was followed by incubation with rat-liver mevaldate reductase.³ The enzyme solution was acidified and lyophilized, and the residue was continuously extracted with chloroform to isolate $5S-5-[{}^{3}H_{1}]$ mevalonic acid lactone (4). The corresponding $5-[{}^{14}C]$ -isomer was prepared by sodium borohydride reduction.⁷ Both compounds were purified to constant activity by thick-layer chromatography on silica gel.

The stereochemical purity of (4) was determined by the method Popják and Cornforth⁸ developed for the 5R-5- $[^{3}H_{1}]$ mevalonic acid isomer (1). They found that the conversion of six molecules of mevalonic acid into squalene (9) by an anaerobic rat-liver homogenate resulted in the elimination of one 5S-hydrogen, all six 5R-hydrogens being retained. The hydrogen which is lost comes from C-1 of farnesyl pyrophosphate (10) during its head-to-head coupling to form squalene (see Scheme 2).


experimental error, the synthetic $5S-5-[^{3}H_{1}]$ mevalonic acid lactone is stereochemically pure.

A note of warning should be added at this point. The ³H/¹⁴C ratios obtained by mixing enzymatically prepared substrates with synthetic ones are not always reliable. The ${}^{3}H/{}^{14}C$ ratio of (4) should be the same as that of the pentane-1,4-diol diacetate sample. That it is not is due to the partial specificity of mevaldate reductase for 3Rmevaldate at the expense of the 3S-isomer.⁹ In the synthesis of squalene, one of the intermediate enzymes, mevalonate kinase, is completely specific for 3R-mevalonate.

SCHEME 2

Ozonolysis of a sample of squalene obtained from 5S-5-[³H₁]-5[¹⁴C]mevalonic acid followed by reduction of the ozonide with lithium aluminium hydride and acetylation of the alcoholic products with acetic anhydride gave a mixture of butane-1,4-diol diacetate (11) and pentane-1,4-diol diacetate (12). The diacetates were separated by gas chromatography and their ³H/¹⁴C ratios measured. As recorded in the Table, the butane-1,4-diol diacetate had a $^{8}H/^{14}C$ ratio of 8.75; 1 (9.4; 1) as compared to the pentane-1,4-diol diacetate ratio of 15.2:1 (17.0:1). From Scheme 2, each molecule of (11) should have one ³H and two ¹⁴C, while each molecule of (12) should have one ³H and one ¹⁴C.

That is, the ${}^{3}H/{}^{14}C$ ratio of (11) should be one half that of (12). The observed ratios of 0.57 (0.55) indicate that, within

¹ J. W. Cornforth, *Quart. Rev.*, 1969, 23, 125. ³ Independent syntheses of 5S-5[³H₁]mevalonic acid are described in the two accompanying communications by Cornforth and Ross, and by Blattmann and Rétey.

- ³C. Donninger and G. Popják, Proc. Roy. Soc., 1966, B, 163, 465.
- ⁴ D. B. Melville, J. R. Rachelle, and E. B. Keller, J. Biol. Chem., 1948, 169, 419.
- ⁶ E. E. Royals and K. C. Brannock, J. Amer. Chem. Soc., 1953, 75, 2050.
 ⁶ J. W. Cornforth, R. H. Cornforth, A. Pelter, M. G. Horning, and G. Popják, Tetrahedron, 1959, 5, 311.
- ⁷ H. Eggerer and F. Lynen, Annalen, 1957, 608, 71.
 ⁸ G. Popják and J. W. Cornforth, Biochem. J., 1966, 101, 553.
- ⁹ H. J. Knauss, J. D. Brodie, and J. W. Porter, J. Lipid Res., 1962, 3, 197.

Since the $[^{3}H]$ mevalonate is richer in the 3*R*-isomer than the completely racemic ¹⁴C compound, the ³H/¹⁴C ratio of (12) is correspondingly higher than that of (4).

TABLE

Compound	Run 1 c.p.m. ⁸ H ⁸ H/ ¹⁴ C		Run 2 c.p.m. ⁸ H ³ H/ ¹⁴ C	
5S-5-[³ H ₁]5[¹⁴ C]mevalonic acid lactone	$5{\cdot}0 imes10^5$	9-6	1×10^{6}	10.1
Squalene	$1.6 imes10^{5}$	12.6	$3 imes10^{5}$	13.9
Pentanediol 1,4-diacetate (12)		$15 \cdot 2$		17.0
Butanediol 1,4-diacetate (11)		8.75		9·4

This work was supported by a grant from N.I.H. We thank Mr. Richard Cross for his assistance in preparing rat-liver homogenates. J.S. acknowledges financial assistance from the National Cancer Institute.

(Received, September 3rd, 1970; Com. 1492.